Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Wellcome Open Res ; 5: 145, 2020.
Article in English | MEDLINE | ID: covidwho-2292058

ABSTRACT

Background: In the context of the current coronavirus disease 2019 (COVID-19) pandemic, understanding household transmission of seasonal coronaviruses may inform pandemic control. We aimed to investigate what proportion of seasonal coronavirus transmission occurred within households, measure the risk of transmission in households, and describe the impact of household-related factors of risk of transmission. Methods: Using data from three winter seasons of the UK Flu Watch cohort study, we measured the proportion of symptomatic infections acquired outside and within the home, the household transmission risk and the household secondary attack risk for PCR-confirmed seasonal coronaviruses. We present transmission risk stratified by demographic features of households. Results: We estimated that the proportion of cases acquired outside the home, weighted by age and region, was 90.7% (95% CI 84.6- 94.5, n=173/195) and within the home was 9.3% (5.5-15.4, 22/195). Following a symptomatic coronavirus index case, 14.9% (9.8 - 22.1, 20/134) of households experienced symptomatic transmission to at least one other household member. Onward transmission risk ranged from 11.90% (4.84-26.36, 5/42) to 19.44% (9.21-36.49, 7/36) by strain. The overall household secondary attack risk for symptomatic cases was 8.00% (5.31-11.88, 22/275), ranging across strains from 5.10 (2.11-11.84, 5/98) to 10.14 (4.82- 20.11, 7/69). Median clinical onset serial interval was 7 days (IQR= 6-9.5). Households including older adults, 3+ children, current smokers, contacts with chronic health conditions, and those in relatively deprived areas had the highest transmission risks. Child index cases and male index cases demonstrated the highest transmission risks. Conclusion: Most seasonal coronaviruses appear to be acquired outside the household, with relatively modest risk of onward transmission within households. Transmission risk following an index case appears to vary by demographic household features, with potential overlap between those demonstrating the highest point estimates for seasonal coronavirus transmission risk and COVID-19 susceptibility and poor illness outcomes.

2.
Scand J Work Environ Health ; 49(5): 350-362, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2292059

ABSTRACT

OBJECTIVES: COVID-19 mitigations have had a profound impact on workplaces, however, multisectoral comparisons of how work-related mitigations were applied are limited. This study aimed to investigate (i) occupational differences in the usage of key work-related mitigations over time and (ii) workers' perceptions of these mitigations. METHODS: Employed/self-employed Virus Watch study participants (N=6279) responded to a mitigation-related online survey covering the periods of December 2020-February 2022. Logistic regression was used to investigate occupation- and time-related differences in the usage of work-related mitigation methods. Participants' perceptions of mitigation methods were investigated descriptively using proportions. RESULTS: Usage of work-related mitigation methods differed between occupations and over time, likely reflecting variation in job roles, workplace environments, legislation and guidance. Healthcare workers had the highest predicted probabilities for several mitigations, including reporting frequent hand hygiene [predicted probability across all survey periods 0.61 (95% CI 0.56-0.66)] and always wearing face coverings [predicted probability range 0.71 (95% CI 0.66-0.75) - 0.80 (95% CI 0.76-0.84) across survey periods]. There were significant cross-occupational trends towards reduced mitigations during periods of less stringent national restrictions. The majority of participants across occupations (55-88%) agreed that most mitigations were reasonable and worthwhile even after the relaxation of national restrictions; agreement was lower for physical distancing (39-44%). CONCLUSIONS: While usage of work-related mitigations appeared to vary alongside stringency of national restrictions, agreement that most mitigations were reasonable and worthwhile remained substantial. Further investigation into the factors underlying between-occupational differences could assist pandemic planning and prevention of workplace COVID-19 transmission.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Wales/epidemiology , Occupations , Workplace , SARS-CoV-2
3.
Occupational and Environmental Medicine ; 80(Suppl 1):A31, 2023.
Article in English | ProQuest Central | ID: covidwho-2271003

ABSTRACT

IntroductionThe PROTECT National Core Study was funded by the UK Health and Safety Executive (HSE) to investigate how SARS-CoV-2 is transmitted from person to person, and how this varies in different settings.One area of research aimed to compare relative differences between occupational groups and sectors in SARS-CoV-2 infection and COVID-19 mortality over time and explore the likely reasons.MethodsWe brought together evidence from nine published epidemiological studies supported by PROTECT relating to four data sets, plus new analyses relating to the Omicron period. We organised these studies into the following categories: those that specifically compared risks of infection mortality;and those that looked at risk factors for SARS-CoV-2 infection and/or COVID-19 mortality. We extracted descriptive study level data and results. We investigated risk across four pandemic waves using forest plots for key occupational groups by time. A workshop was organised in Oct 2022 with authors from each study to discuss and document key strengths and expected biases.ResultsHealthcare and social care sectors saw elevated risks of SARS-CoV-2 infection and COVID-19 mortality early in the pandemic but thereafter these declined and varied by specific occupational subgroup. The education sector saw sustained elevated risks of infection after the initial lockdown period with little evidence of elevated mortality. Results were largely consistent across different studies with differing expected biases, although unmeasured confounding cannot be ruled out.ConclusionDifferences between occupations and sectors in the UK in terms of COVID-19 risks that were observed in the early stages of the pandemic largely dissipated over time. Studies investigating risk factors suggest that reasons could include vaccination roll out, introduction of risk mitigation within high risk sectors, changes in patterns of home-working and lifting of restriction on social mixing (thereby reducing the relative effect of work).

4.
Wellcome open research ; 7, 2022.
Article in English | EuropePMC | ID: covidwho-2263211

ABSTRACT

Background: "Lockdowns” to control serious respiratory virus pandemics were widely used during the coronavirus disease 2019 (COVID-19) pandemic. However, there is limited information to understand the settings in which most transmission occurs during lockdowns, to support refinement of similar policies for future pandemics. Methods: Among Virus Watch household cohort participants we identified those infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outside the household. Using survey activity data, we undertook multivariable logistic regressions assessing the contribution of activities on non-household infection risk. We calculated adjusted population attributable fractions (APAF) to estimate which activity accounted for the greatest proportion of non-household infections during the pandemic's second wave. Results: Among 10,858 adults, 18% of cases were likely due to household transmission. Among 10,475 participants (household-acquired cases excluded), including 874 non-household-acquired infections, infection was associated with: leaving home for work or education (AOR 1.20 (1.02 – 1.42), APAF 6.9%);public transport (more than once per week AOR 1.82 (1.49 – 2.23), public transport APAF 12.42%);and shopping (more than once per week AOR 1.69 (1.29 – 2.21), shopping APAF 34.56%). Other non-household activities were rare and not significantly associated with infection. Conclusions: During lockdown, going to work and using public or shared transport independently increased infection risk, however only a minority did these activities. Most participants visited shops, accounting for one-third of non-household transmission. Transmission in restricted hospitality and leisure settings was minimal suggesting these restrictions were effective. If future respiratory infection pandemics emerge these findings highlight the value of working from home, using forms of transport that minimise exposure to others, minimising exposure to shops and restricting non-essential activities.

5.
Wellcome Open Res ; 7: 199, 2022.
Article in English | MEDLINE | ID: covidwho-2263212

ABSTRACT

Background: "Lockdowns" to control serious respiratory virus pandemics were widely used during the coronavirus disease 2019 (COVID-19) pandemic.  However, there is limited information to understand the settings in which most transmission occurs during lockdowns, to support refinement of similar policies for future pandemics.  Methods: Among Virus Watch household cohort participants we identified those infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outside the household.  Using survey activity data, we undertook multivariable logistic regressions assessing the contribution of activities on non-household infection risk.  We calculated adjusted population attributable fractions (APAF) to estimate which activity accounted for the greatest proportion of non-household infections during the pandemic's second wave. Results: Among 10,858 adults, 18% of cases were likely due to household transmission.  Among 10,475 participants (household-acquired cases excluded), including 874 non-household-acquired infections, infection was associated with: leaving home for work or education (AOR 1.20 (1.02 - 1.42), APAF 6.9%); public transport (more than once per week AOR 1.82 (1.49 - 2.23), public transport APAF 12.42%); and shopping (more than once per week AOR 1.69 (1.29 - 2.21), shopping APAF 34.56%).  Other non-household activities were rare and not significantly associated with infection. Conclusions: During lockdown, going to work and using public or shared transport independently increased infection risk, however only a minority did these activities.  Most participants visited shops, accounting for one-third of non-household transmission.  Transmission in restricted hospitality and leisure settings was minimal suggesting these restrictions were effective.   If future respiratory infection pandemics emerge these findings highlight the value of working from home, using forms of transport that minimise exposure to others, minimising exposure to shops and restricting non-essential activities.

6.
Scand J Work Environ Health ; 49(3): 171-181, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2278236

ABSTRACT

OBJECTIVE: This study aimed to assess whether workplace exposures as estimated via a COVID-19 job exposure matrix (JEM) are associated with SARS-CoV-2 in the UK. METHODS: Data on 244 470 participants were available from the Office for National Statistics Coronavirus Infection Survey (CIS) and 16 801 participants from the Virus Watch Cohort, restricted to workers aged 20-64 years. Analysis used logistic regression models with SARS-CoV-2 as the dependent variable for eight individual JEM domains (number of workers, nature of contacts, contact via surfaces, indoor or outdoor location, ability to social distance, use of face covering, job insecurity, and migrant workers) with adjustment for age, sex, ethnicity, index of multiple deprivation (IMD), region, household size, urban versus rural area, and health conditions. Analyses were repeated for three time periods (i) February 2020 (Virus Watch)/April 2020 (CIS) to May 2021), (ii) June 2021 to November 2021, and (iii) December 2021 to January 2022. RESULTS: Overall, higher risk classifications for the first six domains tended to be associated with an increased risk of infection, with little evidence of a relationship for domains relating to proportion of workers with job insecurity or migrant workers. By time there was a clear exposure-response relationship for these domains in the first period only. Results were largely consistent across the two UK cohorts. CONCLUSIONS: An exposure-response relationship exists in the early phase of the COVID-19 pandemic for number of contacts, nature of contacts, contacts via surfaces, indoor or outdoor location, ability to social distance and use of face coverings. These associations appear to have diminished over time.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , United Kingdom/epidemiology
7.
JMIR Public Health Surveill ; 9: e38072, 2023 03 08.
Article in English | MEDLINE | ID: covidwho-2274127

ABSTRACT

BACKGROUND: Evidence suggests that individuals may change adherence to public health policies aimed at reducing the contact, transmission, and spread of the SARS-CoV-2 virus after they receive their first SARS-CoV-2 vaccination when they are not fully vaccinated. OBJECTIVE: We aimed to estimate changes in median daily travel distance of our cohort from their registered addresses before and after receiving a SARS-CoV-2 vaccine. METHODS: Participants were recruited into Virus Watch starting in June 2020. Weekly surveys were sent out to participants, and vaccination status was collected from January 2021 onward. Between September 2020 and February 2021, we invited 13,120 adult Virus Watch participants to contribute toward our tracker subcohort, which uses the GPS via a smartphone app to collect data on movement. We used segmented linear regression to estimate the median daily travel distance before and after the first self-reported SARS-CoV-2 vaccine dose. RESULTS: We analyzed the daily travel distance of 249 vaccinated adults. From 157 days prior to vaccination until the day before vaccination, the median daily travel distance was 9.05 (IQR 8.06-10.09) km. From the day of vaccination to 105 days after vaccination, the median daily travel distance was 10.08 (IQR 8.60-12.42) km. From 157 days prior to vaccination until the vaccination date, there was a daily median decrease in mobility of 40.09 m (95% CI -50.08 to -31.10; P<.001). After vaccination, there was a median daily increase in movement of 60.60 m (95% CI 20.90-100; P<.001). Restricting the analysis to the third national lockdown (January 4, 2021, to April 5, 2021), we found a median daily movement increase of 18.30 m (95% CI -19.20 to 55.80; P=.57) in the 30 days prior to vaccination and a median daily movement increase of 9.36 m (95% CI 38.6-149.00; P=.69) in the 30 days after vaccination. CONCLUSIONS: Our study demonstrates the feasibility of collecting high-volume geolocation data as part of research projects and the utility of these data for understanding public health issues. Our various analyses produced results that ranged from no change in movement after vaccination (during the third national lock down) to an increase in movement after vaccination (considering all periods, up to 105 days after vaccination), suggesting that, among Virus Watch participants, any changes in movement distances after vaccination are small. Our findings may be attributable to public health measures in place at the time such as movement restrictions and home working that applied to the Virus Watch cohort participants during the study period.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Wales , SARS-CoV-2 , Cohort Studies , Geographic Information Systems , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , England , Vaccination , Self Report
8.
J Occup Med Toxicol ; 18(1): 5, 2023 Apr 03.
Article in English | MEDLINE | ID: covidwho-2251573

ABSTRACT

BACKGROUND: Workers across different occupations vary in their risk of SARS-CoV-2 infection, but the direct contribution of occupation to this relationship is unclear. This study aimed to investigate how infection risk differed across occupational groups in England and Wales up to April 2022, after adjustment for potential confounding and stratification by pandemic phase. METHODS: Data from 15,190 employed/self-employed participants in the Virus Watch prospective cohort study were used to generate risk ratios for virologically- or serologically-confirmed SARS-CoV-2 infection using robust Poisson regression, adjusting for socio-demographic and health-related factors and non-work public activities. We calculated attributable fractions (AF) amongst the exposed for belonging to each occupational group based on adjusted risk ratios (aRR). RESULTS: Increased risk was seen in nurses (aRR = 1.44, 1.25-1.65; AF = 30%, 20-39%), doctors (aRR = 1.33, 1.08-1.65; AF = 25%, 7-39%), carers (1.45, 1.19-1.76; AF = 31%, 16-43%), primary school teachers (aRR = 1.67, 1.42- 1.96; AF = 40%, 30-49%), secondary school teachers (aRR = 1.48, 1.26-1.72; AF = 32%, 21-42%), and teaching support occupations (aRR = 1.42, 1.23-1.64; AF = 29%, 18-39%) compared to office-based professional occupations. Differential risk was apparent in the earlier phases (Feb 2020-May 2021) and attenuated later (June-October 2021) for most groups, although teachers and teaching support workers demonstrated persistently elevated risk across waves. CONCLUSIONS: Occupational differences in SARS-CoV-2 infection risk vary over time and are robust to adjustment for socio-demographic, health-related, and non-workplace activity-related potential confounders. Direct investigation into workplace factors underlying elevated risk and how these change over time is needed to inform occupational health interventions.

10.
Vaccine ; 41(2): 511-518, 2023 01 09.
Article in English | MEDLINE | ID: covidwho-2184276

ABSTRACT

BACKGROUND: Studies of COVID-19 vaccine effectiveness show increases in COVID-19 cases within 14 days of a first dose, potentially reflecting post-vaccination behaviour changes associated with SARS-CoV-2 transmission before vaccine protection. However, direct evidence for a relationship between vaccination and behaviour is lacking. We aimed to examine the association between vaccination status and self-reported non-household contacts and non-essential activities during a national lockdown in England and Wales. METHODS: Participants (n = 1154) who had received the first dose of a COVID-19 vaccine reported non-household contacts and non-essential activities from February to March 2021 in monthly surveys during a national lockdown in England and Wales. We used a case-crossover study design and conditional logistic regression to examine the association between vaccination status (pre-vaccination vs 14 days post-vaccination) and self-reported contacts and activities within individuals. Stratified subgroup analyses examined potential effect heterogeneity by sociodemographic characteristics such as sex, household income or age group. RESULTS: 457/1154 (39.60 %) participants reported non-household contacts post-vaccination compared with 371/1154 (32.15 %) participants pre-vaccination. 100/1154 (8.67 %) participants reported use of non-essential shops or services post-vaccination compared with 74/1154 (6.41 %) participants pre-vaccination. Post-vaccination status was associated with increased odds of reporting non-household contacts (OR 1.65, 95 % CI 1.31-2.06, p < 0.001) and use of non-essential shops or services (OR 1.50, 95 % CI 1.03-2.17, p = 0.032). This effect varied between men and women and different age groups. CONCLUSION: Participants had higher odds of reporting non-household contacts and use of non-essential shops or services within 14 days of their first COVID-19 vaccine compared to pre-vaccination. Public health emphasis on maintaining protective behaviours during this post-vaccination time period when individuals have yet to develop full protection from vaccination could reduce risk of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Humans , Female , COVID-19/epidemiology , COVID-19/prevention & control , Wales/epidemiology , Cross-Over Studies , COVID-19 Vaccines , Communicable Disease Control , Vaccination , England/epidemiology , Self Report
11.
Int J Epidemiol ; 52(2): 342-354, 2023 04 19.
Article in English | MEDLINE | ID: covidwho-2189115

ABSTRACT

BACKGROUND: The Omicron B.1.1.529 variant increased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in doubly vaccinated individuals, particularly in the Oxford-AstraZeneca COVID-19 vaccine (ChAdOx1) recipients. To tackle infections, the UK's booster vaccination programmes used messenger ribonucleic acid (mRNA) vaccines irrespective of an individual's primary course vaccine type, and prioritized the clinically vulnerable. These mRNA vaccines included the Pfizer-BioNTech COVID-19 vaccine (BNT162b2) the Moderna COVID-19 vaccine (mRNA-1273). There is limited understanding of the effectiveness of different primary vaccination courses on mRNA booster vaccines against SARs-COV-2 infections and how time-varying confounders affect these evaluations. METHODS: Trial emulation was applied to a prospective community observational cohort in England and Wales to reduce time-varying confounding-by-indication driven by prioritizing vaccination based upon age, vulnerability and exposure. Trial emulation was conducted by meta-analysing eight adult cohort results whose booster vaccinations were staggered between 16 September 2021 and 05 January 2022 and followed until 23 January 2022. Time from booster vaccination until SARS-CoV-2 infection, loss of follow-up or end of study was modelled using Cox proportional hazard models and adjusted for age, sex, minority ethnic status, clinically vulnerability and deprivation. RESULTS: A total of 19 159 participants were analysed, with 11 709 ChAdOx1 primary courses and 7450 BNT162b2 primary courses. Median age, clinical vulnerability status and infection rates fluctuate through time. In mRNA-boosted adults, 7.4% (n = 863) of boosted adults with a ChAdOx1 primary course experienced a SARS-CoV-2 infection compared with 7.7% (n = 571) of those who had BNT162b2 as a primary course. The pooled adjusted hazard ratio (aHR) was 1.01 with a 95% confidence interval (CI) of: 0.90 to 1.13. CONCLUSION: After an mRNA booster dose, we found no difference in protection comparing those with a primary course of BNT162b2 with those with a ChAdOx1 primary course. This contrasts with pre-booster findings where previous research shows greater effectiveness of BNT162b2 than ChAdOx1 in preventing infection.


Subject(s)
COVID-19 , Adult , Humans , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Vaccination
12.
Vaccine ; 2022.
Article in English | EuropePMC | ID: covidwho-2147669

ABSTRACT

Background Studies of COVID-19 vaccine effectiveness show increases in COVID-19 cases within 14 days of a first dose, potentially reflecting post-vaccination behaviour changes associated with SARS-CoV-2 transmission before vaccine protection. However, direct evidence for a relationship between vaccination and behaviour is lacking. We aimed to examine the association between vaccination status and self-reported non-household contacts and non-essential activities during a national lockdown in England and Wales. Methods Participants (n=1,154) who had received the first dose of a COVID-19 vaccine reported non-household contacts and non-essential activities from February to March 2021 in monthly surveys during a national lockdown in England and Wales. We used a case-crossover study design and conditional logistic regression to examine the association between vaccination status (pre-vaccination vs. 14 days post-vaccination) and self-reported contacts and activities within individuals. Stratified subgroup analyses examined potential effect heterogeneity by sociodemographic characteristics such as sex, household income or age group. Results 457/1,154 (39.60%) participants reported non-household contacts post-vaccination compared with 371/1,154 (32.15%) participants pre-vaccination. 100/1,154 (8.67%) participants reported use of non-essential shops or services post-vaccination compared with 74/1,154 (6.41%) participants pre-vaccination. Post-vaccination status was associated with increased odds of reporting non-household contacts (OR 1.65, 95% CI 1.31-2.06, p<0.001) and use of non-essential shops or services (OR 1.50, 95% CI 1.03-2.17, p=0.032). This effect varied between men and women and different age groups. Conclusion Participants had higher odds of reporting non-household contacts and use of non-essential shops or services within 14 days of their first COVID-19 vaccine compared to pre-vaccination. Public health emphasis on maintaining protective behaviours during this post-vaccination time period when individuals have yet to develop full protection from vaccination could reduce risk of SARS-CoV-2 infection.

13.
Lancet ; 400 Suppl 1: S40, 2022 11.
Article in English | MEDLINE | ID: covidwho-2132731

ABSTRACT

BACKGROUND: The serial interval is a key epidemiological measure that quantifies the time between an infector's and an infectee's onset of symptoms. This measure helps investigate epidemiological links between cases, and is an important parameter in transmission models used to estimate transmissibility and inform control strategies. The emergence of multiple variants of concern (VOC) during the SARS-CoV-2 pandemic has led to uncertainties about potential changes in the serial interval of COVID-19. We estimated the household serial interval of multiple VOC using data collected by the Virus Watch study. This online, prospective, community cohort study followed-up entire households in England and Wales since mid-June 2020. METHODS: This analysis included 5842 symptomatic individuals with confirmed SARS-CoV-2 infection among 2579 households from Sept 1, 2020, to Aug 10, 2022. SARS-CoV-2 variant designation was based upon national surveillance data of variant prevalence by date and geographical region. We used a Bayesian framework to infer who infected whom by exploring all transmission trees compatible with the observed dates of symptoms, given assumptions on the incubation period and generation time distributions using the R package outbreaker2. FINDINGS: We characterised the serial interval of COVID-19 by VOC. The mean serial interval was shortest for omicron BA5 (2·02 days; 95% credible interval [CrI] 1·26-2·84) and longest for alpha (3·37 days; 2·52-4·04). The mean serial interval before alpha (wild-type) was 2·29 days (95% CrI 1·39-2·94), 3·11 days (2·28-3·90) for delta, 2·72 days (2·01-3·47) for omicron BA1, and 2·67 days (1·90-3·46) for omicron BA2. We estimated that 17% (95% CrI 5-26) of serial interval values are negative across all variants. INTERPRETATION: Most methods estimating the reproduction number from incidence time series do not allow for a negative serial interval by construction. Further research is needed to extend these methods and assess biases introduced by not accounting for negative serial intervals. To our knowledge, this study is the first to use a Bayesian framework to estimate the serial interval of all major SARS-CoV-2 VOC from thousands of confirmed household cases. FUNDING: UK Medical Research Council and Wellcome Trust.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Bayes Theorem , Cohort Studies , Prospective Studies
14.
Vaccine ; 40(52): 7646-7652, 2022 Dec 12.
Article in English | MEDLINE | ID: covidwho-2096116

ABSTRACT

BACKGROUND: Occupational disparities in COVID-19 vaccine uptake can impact the effectiveness of vaccination programmes and introduce particular risk for vulnerable workers and those with high workplace exposure. This study aimed to investigate COVID-19 vaccine uptake by occupation, including for vulnerable groups and by occupational exposure status. METHODS: We used data from employed or self-employed adults who provided occupational information as part of the Virus Watch prospective cohort study (n = 19,595) and linked this to study-obtained information about vulnerability-relevant characteristics (age, medical conditions, obesity status) and work-related COVID-19 exposure based on the Job Exposure Matrix. Participant vaccination status for the first, second, and third dose of any COVID-19 vaccine was obtained based on linkage to national records and study records. We calculated proportions and Sison-Glaz multinomial 95% confidence intervals for vaccine uptake by occupation overall, by vulnerability-relevant characteristics, and by job exposure. FINDINGS: Vaccination uptake across occupations ranged from 89-96% for the first dose, 87-94% for the second dose, and 75-86% for the third dose, with transport, trade, service and sales workers persistently demonstrating the lowest uptake. Vulnerable workers tended to demonstrate fewer between-occupational differences in uptake than non-vulnerable workers, although clinically vulnerable transport workers (76%-89% across doses) had lower uptake than several other occupational groups (maximum across doses 86%-96%). Workers with low SARS-CoV-2 exposure risk had higher vaccine uptake (86%-96% across doses) than those with elevated or high risk (81-94% across doses). INTERPRETATION: Differential vaccination uptake by occupation, particularly amongst vulnerable and highly-exposed workers, is likely to worsen occupational and related socioeconomic inequalities in infection outcomes. Further investigation into occupational and non-occupational factors influencing differential uptake is required to inform relevant interventions for future COVID-19 booster rollouts and similar vaccination programmes.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Prospective Studies , SARS-CoV-2 , Vaccination
15.
Nat Commun ; 13(1): 5780, 2022 10 02.
Article in English | MEDLINE | ID: covidwho-2050383

ABSTRACT

Vaccination constitutes the best long-term solution against Coronavirus Disease-2019; however, vaccine-derived immunity may not protect all groups equally, and the durability of protective antibodies may be short. We evaluate Spike-antibody responses following BNT162b2 or ChAdOx1-S vaccination amongst SARS-CoV2-naive adults across England and Wales enrolled in a prospective cohort study (Virus Watch). Here we show BNT162b2 recipients achieved higher peak antibody levels after two doses; however, both groups experience substantial antibody waning over time. In 8356 individuals submitting a sample ≥28 days after Dose 2, we observe significantly reduced Spike-antibody levels following two doses amongst individuals reporting conditions and therapies that cause immunosuppression. After adjusting for these, several common chronic conditions also appear to attenuate the antibody response. These findings suggest the need to continue prioritising vulnerable groups, who have been vaccinated earliest and have the most attenuated antibody responses, for future boosters.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , Cohort Studies , Demography , Humans , Prospective Studies , RNA, Viral , SARS-CoV-2 , Vaccination
16.
Int J Infect Dis ; 123: 104-111, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2015445

ABSTRACT

OBJECTIVES: Seroprevalence studies can provide a measure of SARS-CoV-2 cumulative incidence, but a better understanding of spike and nucleocapsid (anti-N) antibody dynamics following infection is needed to assess the longevity of detectability. METHODS: Adults aged ≥18 years, from households enrolled in the Virus Watch prospective community cohort study in England and Wales, provided monthly capillary blood samples, which were tested for spike antibody and anti-N. Participants self-reported vaccination dates and past medical history. Previous polymerase chain reaction (PCR) swabs were obtained through Second Generation Surveillance System linkage data. The primary outcome variables were seropositivity and total anti-N and spike antibody levels after PCR-confirmed infection. RESULTS: A total of 13,802 eligible individuals provided 58,770 capillary blood samples. A total of 537 of these had a previous positive PCR-confirmed SARS-CoV-2 infection within 0-269 days of antibody sample date, among them 432 (80.45%) having a positive anti-N result. Median anti-N levels peaked between days 90 and 119 after PCR results and then began to decline. There is evidence of anti-N waning from 120 days onwards, with earlier waning for females and younger age categories. CONCLUSION: Our findings suggest that anti-N has around 80% sensitivity for identifying previous COVID-19 infection, and the duration of detectability is affected by sex and age.


Subject(s)
COVID-19 , Adolescent , Adult , Antibodies, Viral , Antibody Formation , COVID-19/diagnosis , COVID-19/epidemiology , Cohort Studies , Female , Humans , Nucleocapsid , Prospective Studies , SARS-CoV-2 , Seroepidemiologic Studies
17.
Nat Commun ; 13(1): 4869, 2022 08 18.
Article in English | MEDLINE | ID: covidwho-1991588

ABSTRACT

A range of studies globally demonstrate that the effectiveness of SARS-CoV-2 vaccines wane over time, but the total effect of anti-S antibody levels on risk of SARS-CoV-2 infection and whether this varies by vaccine type is not well understood. Here we show that anti-S levels peak three to four weeks following the second dose of vaccine and the geometric mean of the samples is nine fold higher for BNT162b2 than ChAdOx1. Increasing anti-S levels are associated with a reduced risk of SARS-CoV-2 infection (Hazard Ratio 0.85; 95%CIs: 0.79-0.92). We do not find evidence that this antibody relationship with risk of infection varies by second dose vaccine type (BNT162b2 vs. ChAdOx1). In keeping with our anti-S antibody data, we find that people vaccinated with ChAdOx1 had 1.64 times the odds (95% confidence interval 1.45-1.85) of a breakthrough infection compared to BNT162b2. We anticipate our findings to be useful in the estimation of the protective effect of anti-S levels on risk of infection due to Delta. Our findings provide evidence about the relationship between antibody levels and protection for different vaccines and will support decisions on optimising the timing of booster vaccinations and identifying individuals who should be prioritised for booster vaccination, including those who are older, clinically extremely vulnerable, or received ChAdOx1 as their primary course. Our finding that risk of infection by anti-S level does not interact with vaccine type, but that individuals vaccinated with ChAdOx1 were at higher risk of infection, provides additional support for the use of using anti-S levels for estimating vaccine efficacy.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2
18.
Occup Environ Med ; 2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1807493

ABSTRACT

OBJECTIVES: Risk of SARS-CoV-2 infection varies across occupations; however, investigation into factors underlying differential risk is limited. We aimed to estimate the total effect of occupation on SARS-CoV-2 serological status, whether this is mediated by workplace close contact, and how exposure to poorly ventilated workplaces varied across occupations. METHODS: We used data from a subcohort (n=3775) of adults in the UK-based Virus Watch cohort study who were tested for SARS-CoV-2 anti-nucleocapsid antibodies (indicating natural infection). We used logistic decomposition to investigate the relationship between occupation, contact and seropositivity, and logistic regression to investigate exposure to poorly ventilated workplaces. RESULTS: Seropositivity was 17.1% among workers with daily close contact vs 10.0% for those with no work-related close contact. Compared with other professional occupations, healthcare, indoor trade/process/plant, leisure/personal service, and transport/mobile machine workers had elevated adjusted total odds of seropositivity (1.80 (1.03 to 3.14) - 2.46 (1.82 to 3.33)). Work-related contact accounted for a variable part of increased odds across occupations (1.04 (1.01 to 1.08) - 1.23 (1.09 to 1.40)). Occupations with raised odds of infection after accounting for work-related contact also had greater exposure to poorly ventilated workplaces. CONCLUSIONS: Work-related close contact appears to contribute to occupational variation in seropositivity. Reducing contact in workplaces is an important COVID-19 control measure.

19.
Lancet Reg Health Eur ; 16: 100352, 2022 May.
Article in English | MEDLINE | ID: covidwho-1799798

ABSTRACT

Background: Workplaces are an important potential source of SARS-CoV-2 exposure; however, investigation into workplace contact patterns is lacking. This study aimed to investigate how workplace attendance and features of contact varied between occupations across the COVID-19 pandemic in England. Methods: Data were obtained from electronic contact diaries (November 2020-November 2021) submitted by employed/self-employed prospective cohort study participants (n=4,616). We used mixed models to investigate the effects of occupation and time for: workplace attendance, number of people sharing workspace, time spent sharing workspace, number of close contacts, and usage of face coverings. Findings: Workplace attendance and contact patterns varied across occupations and time. The predicted probability of intense space sharing during the day was highest for healthcare (78% [95% CI: 75-81%]) and education workers (64% [59%-69%]), who also had the highest probabilities for larger numbers of close contacts (36% [32%-40%] and 38% [33%-43%] respectively). Education workers also demonstrated relatively low predicted probability (51% [44%-57%]) of wearing a face covering during close contact. Across all occupational groups, workspace sharing and close contact increased and usage of face coverings decreased during phases of less stringent restrictions. Interpretation: Major variations in workplace contact patterns and mask use likely contribute to differential COVID-19 risk. Patterns of variation by occupation and restriction phase may inform interventions for future waves of COVID-19 or other respiratory epidemics. Across occupations, increasing workplace contact and reduced face covering usage is concerning given ongoing high levels of community transmission and emergence of variants. Funding: Medical Research Council; HM Government; Wellcome Trust.

20.
J Epidemiol Community Health ; 76(4): 319-326, 2022 04.
Article in English | MEDLINE | ID: covidwho-1467721

ABSTRACT

BACKGROUND: Differential exposure to public activities may contribute to stark deprivation-related inequalities in SARS-CoV-2 infection and outcomes but has not been directly investigated. We set out to investigate whether participants in Virus Watch-a large community cohort study based in England and Wales-reported differential exposure to public activities and non-household contacts during the autumn-winter phase of the COVID-19 pandemic according to postcode-level socioeconomic deprivation. METHODS: Participants (n=20 120-25 228 across surveys) reported their daily activities during 3 weekly periods in late November 2020, late December 2020 and mid-February 2021. Deprivation was quantified based on participants' residential postcode using English or Welsh Index of Multiple Deprivation quintiles. We used Poisson mixed-effect models with robust standard errors to estimate the relationship between deprivation and risk of exposure to public activities during each survey period. RESULTS: Relative to participants in the least deprived areas, participants in the most deprived areas exhibited elevated risk of exposure to vehicle sharing (adjusted risk ratio (aRR) range across time points: 1.73-8.52), public transport (aRR: 3.13-5.73), work or education outside of the household (aRR: 1.09-1.21), essential shops (aRR: 1.09-1.13) and non-household contacts (aRR: 1.15-1.19) across multiple survey periods. CONCLUSION: Differential exposure to essential public activities-such as attending workplaces and visiting essential shops-is likely to contribute to inequalities in infection risk and outcomes. Public health interventions to reduce exposure during essential activities and financial and practical support to enable low-paid workers to stay at home during periods of intense transmission may reduce COVID-related inequalities.


Subject(s)
COVID-19 , COVID-19/epidemiology , Cohort Studies , England/epidemiology , Health Status Disparities , Humans , Pandemics , SARS-CoV-2 , Wales/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL